Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38473886

RESUMO

Caffeic acid O-methyltransferase (COMT) participates in various physiological activities in plants, such as positive responses to abiotic stresses and the signal transduction of phytohormones. In this study, 18 COMT genes were identified in the chromosome-level reference genome of mango, named MiCOMTs. A phylogenetic tree containing nine groups (I-IX) was constructed based on the amino acid sequences of the 71 COMT proteins from seven species. The phylogenetic tree indicated that the members of the MiCOMTs could be divided into four groups. Quantitative real-time PCR showed that all MiCOMT genes have particularly high expression levels during flowering. The expression levels of MiCOMTs were different under abiotic and biotic stresses, including salt and stimulated drought stresses, ABA and SA treatment, as well as Xanthomonas campestris pv. mangiferaeindicae and Colletotrichum gloeosporioides infection, respectively. Among them, the expression level of MiCOMT1 was significantly up-regulated at 6-72 h after salt and stimulated drought stresses. The results of gene function analysis via the transient overexpression of the MiCOMT1 gene in Nicotiana benthamiana showed that the MiCOMT1 gene can promote the accumulation of ABA and MeJA, and improve the salt tolerance of mango. These results are beneficial to future researchers aiming to understand the biological functions and molecular mechanisms of MiCOMT genes.


Assuntos
Mangifera , Metiltransferases , Mangifera/genética , Proteínas de Plantas/genética , Tolerância ao Sal/genética , Filogenia , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Secas , Plantas Geneticamente Modificadas/genética
2.
Materials (Basel) ; 16(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37374613

RESUMO

The evaluation of concrete surface roughness is crucial in the field of civil engineering. The purpose of this study is to propose a no-contact and efficient method for the measurement of the roughness of concrete fracture surfaces based on fringe-projection technology. A simple phase-correction method using one additional strip image is presented for the phase unwrapping to improve the measurement efficiency and accuracy. The experimental results indicate that the measuring error for plane height is less than 0.1mm, and the relative accuracy for measuring a cylindrical object is about 0.1%, meeting the requirements for concrete fracture-surface measurement. On this basis, three-dimensional reconstructions were carried out on various concrete fracture surfaces to evaluate the roughness. The results reveal that the surface roughness (R) and fractal dimension (D) decrease as the concrete strength increases or the water-to-cement ratio decreases, consistent with previous studies. In addition, compared with the surface roughness, the fractal dimension is more sensitive to the change in concrete surface shape. The proposed method is effective for detecting concrete fracture-surface features.

3.
Chem Commun (Camb) ; 59(46): 6956-6968, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37184685

RESUMO

Metal complexes have shown promise as photosensitizers for cancer diagnosis and therapeutics. However, the vast majority of metal photosensitizers are not ideal and associated with several limitations including pharmacokinetic limitations, off-target toxicity, fast systemic clearance, poor membrane permeability, and hypoxic tumour microenvironments. Metal complex functionalized nanomaterials have the potential to construct multifunctional systems, which not only overcome the above defects of metal complexes but are also conducive to modulating the tumour microenvironment (TME) and employing combination therapies to boost photodynamic therapy (PDT) efficacy. In this review, we first introduce the current challenges of photodynamic therapy and summarize the recent research strategies (such as metal coordination bonds, self-assembly, π-π stacking, physisorption, and so on) used for preparing metal complexes functionalized nanomaterials in the application of PDT.


Assuntos
Complexos de Coordenação , Nanoestruturas , Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , Complexos de Coordenação/química , Nanoestruturas/química , Terapia Combinada , Neoplasias/patologia , Microambiente Tumoral
4.
Chem Sci ; 14(6): 1461-1471, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36794192

RESUMO

Conventional photodynamic therapy mainly causes a therapeutic effect on the primary tumor through the localized generation of reactive oxygen species, while metastatic tumors remain poorly affected. Complementary immunotherapy is effective in eliminating small, non-localized tumors distributed across multiple organs. Here, we report the Ir(iii) complex Ir-pbt-Bpa as a highly potent immunogenic cell death inducing photosensitizer for two-photon photodynamic immunotherapy against melanoma. Ir-pbt-Bpa can produce singlet oxygen and superoxide anion radicals upon light irradiation, causing cell death by a combination of ferroptosis and immunogenic cell death. In a mouse model with two physically separated melanoma tumors, although only one of the primary tumors was irradiated, a strong tumor reduction of both tumors was observed. Upon irradiation, Ir-pbt-Bpa not only induced the immune response of CD8+ T cells and the depletion of regulatory T cells, but also caused an increase in the number of the effector memory T cells to achieve long-term anti-tumor immunity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...